Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids.
نویسندگان
چکیده
We present a novel experimental method to measure linear viscoelastic moduli of complex fluids using dynamic light scattering. A generalized Langevin equation is used to relate the mean square displacement of a probe particle to the storage and loss moduli of the bulk complex fluid. We confirm the experimental validity of this technique by comparing the light scattering results with mechanical measurements for several complex fluids. This method probes the moduli over a greatly extended frequency range and provides significant new insight into the elastic susceptibility of complex fluids.
منابع مشابه
Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids
We present a new use of dynamic light scattering that permits the determination of the viscoelastic behavior of a complex fluid. By describing the motion of a scattering particle in a viscoelastic medium in terms of a generalized Langevin equation with a memory function, we relate the time evolution of its mean-square displacement to the frequency-dependent storage and loss moduli of the medium...
متن کاملMeasuring storage and loss moduli using optical tweezers: broadband microrheology.
We present an experimental procedure to perform broadband microrheological measurements with optical tweezers. A generalized Langevin equation is adopted to relate the time-dependent trajectory of a particle in an imposed flow to the frequency-dependent moduli of the complex fluid. This procedure allows us to measure the material linear viscoelastic properties across the widest frequency range ...
متن کاملRheology of complex fluids measured by dynamic light scattering 1
We introduce a method for using dynamic light scattering to measure the frequency-dependent linear viscoelastic moduli of complex fluids. The technique exploits the fluctuation dissipation theorem, which relates the relaxation of thermal excitations of a probe particle to the viscoelastic properties of the surrounding medium. The relaxation of the thermal excitations of probe particles are dete...
متن کاملDiffusing wave spectroscopy microrheology of actin filament networks.
Filamentous actin (F-actin), one of the constituents of the cytoskeleton, is believed to be the most important participant in the motion and mechanical integrity of eukaryotic cells. Traditionally, the viscoelastic moduli of F-actin networks have been measured by imposing a small mechanical strain and quantifying the resulting stress. The magnitude of the viscoelastic moduli, their concentratio...
متن کاملLaser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds
Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle ima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 74 7 شماره
صفحات -
تاریخ انتشار 1995